
Automating Instruction Selector
Generation in Jikes RVM

Adam Fidel Texas Tech University Faculty Advisors: Dr. J. Eliot Moss Graduate Mentors: Tim Richards
Chujiao Ma Franklin W. Olin College Dr. Charles Weems Ed Walters

Our focus is on providing compiler IR and target architecture
descriptions in CoGenT’s own language (CISL) coupled with compiler-
specific adapters to plug generated instruction selectors into existing
compiler frameworks.

Specifically, we concentrated on the PowerPC architecture for the
target. For the source IR, we use a Java compiler provided by Jikes
RVM.

For future work, there are plans to
implement instruction selection
pattern matching for more common
combinations of targets and
compilers, such as x86.

For CoGenT as a whole, we would
like to work more on descriptions of
micro-architectures as well as
continuous refinement of Gist to be
more efficient.

This work is partially supported by the Research Experience for
Undergraduates Program of the National Science Foundation under NSF
award number CCF-0755376. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and do
not necessarily reflect those of the National Science Foundation.

CoGenT is a simulator and compiler environment driven
by higher level specifications. It includes machine
description languages to describe parts of machine
architectures. Our research focused on the Gist
component of the CoGenT project.

Gist, illustrated in the figure on the right, is a tool in the
CoGenT suite that automates the process of generating
a compiler’s instruction selector.

Universal: automatically generates instruction
selection patterns for any combination of target
instruction set and compiler IR.

Ease of use: writing target-specific machine
descriptions and compiler-specific adapters
greatly reduces the amount of effort required to
build an instruction selector

Future Direction

CoGenT

Results

Process

<pattern>
<source>

<instruction name=“iadd">
<param name=“op">

<value>96</value>
</param>

…
</instruction>

</source>
<target>

<instruction name=“lwz">
<param name=“D">

<value>spTopOffset</value>
</param>

…
</instruction>

</target>
</pattern>

Adapter

@Override
protected final void emit_iadd(){

asm.emitLWZ(T0, 4+spTopOffset, 1);
asm.emitLWZ(T1, spTopOffset, 1);
asm.emitADD(T2, T0, T1);
asm.emitSTW(T2, 4+spTopOffset, 1);
spTopOffset += BYTES_IN_STACKSLOT;

}

@Override
protected final void emit_iadd(){

popInt(T0);
popInt(T1);
asm.emitADD(T2, T0, T1);
pushInt(T2);

}

Fig 1. Illustration of a compiler’s process (purple) and Gist’s automatic instruction selector generation (green).

Fig 4. Illustration of compiler-specific adaption process

instruction class iadd extends ByteCode {
fun encode() {

op = 96;
}
fun effect() {

var word_t a = S.slot[direct(spTopOffset)];
var word_t b = S.slot[direct(spTopOffset + 4)];

S.slot[direct(spTopOffset + 4)] = a + b;
}

}

Fig 3. Description of a compiler IR (Java bytecode)

instruction class add extends XOForm_RT_RA_RB {
fun encode() {

OPCD = 31;
XO = 266;

}
fun effect() {

R[RT] = R[RA] + R[RB];
}

}

Fig 2. Description of a target architecture (PowerPC)

Automatically generated using Gist

Original baseline compiler code in Jikes RVM

Given CISL descriptions for the PowerPC (Fig. 2) and Java’s
bytecode specification (Fig. 3), Gist will generate generic
instruction selection patterns in XML (Fig. 4).

Our adapter parses these patterns and generates code
conformable with Jikes RVM’s baseline complier.

Instruction Selection

High Level
Language

(Source code):
- Cava
- Java

Target code:
- PPC
- ARM

Intermediate
representation

Compiler IR
Description

(CISL)

Gist Adapter

Store Mapping

Target
Description

(CISL)

Front end:
- Parsing
- Abstract syntax
tree construction
- Etc.

Back end:
- Optimization
- Instruction
selection
- Etc.

0

50000

100000

150000

200000

250000

300000

350000

antlr bloat fop jython lusearch luindex pmd xalan

R
un

tim
e

(m
s)

Benchmark Tests

Benchmark Runtimes
original
generated

Fig 5. Graph of average runtime for various benchmarks.

The goal of Gist is to replace the instruction
selector component of the compiler. Since
Jikes RVM is a JIT compiler, we performed
runtime benchmarks to demonstrate that the
instruction selector generated by Gist does
not hinder the efficiency of the compiler.

The benchmark suite we used is a standard
Java runtime benchmarking package called
DaCapo. We did ten iterations of all
benchmark tests for the original
implementation and the Gist generated
instruction selector.

Compiler-specific Adaption

	Slide Number 1

